Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 132024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489224

RESUMO

How neural representations preserve information about multiple stimuli is mysterious. Because tuning of individual neurons is coarse (e.g., visual receptive field diameters can exceed perceptual resolution), the populations of neurons potentially responsive to each individual stimulus can overlap, raising the question of how information about each item might be segregated and preserved in the population. We recently reported evidence for a potential solution to this problem: when two stimuli were present, some neurons in the macaque visual cortical areas V1 and V4 exhibited fluctuating firing patterns, as if they responded to only one individual stimulus at a time (Jun et al., 2022). However, whether such an information encoding strategy is ubiquitous in the visual pathway and thus could constitute a general phenomenon remains unknown. Here, we provide new evidence that such fluctuating activity is also evoked by multiple stimuli in visual areas responsible for processing visual motion (middle temporal visual area, MT), and faces (middle fundus and anterolateral face patches in inferotemporal cortex - areas MF and AL), thus extending the scope of circumstances in which fluctuating activity is observed. Furthermore, consistent with our previous results in the early visual area V1, MT exhibits fluctuations between the representations of two stimuli when these form distinguishable objects but not when they fuse into one perceived object, suggesting that fluctuating activity patterns may underlie visual object formation. Taken together, these findings point toward an updated model of how the brain preserves sensory information about multiple stimuli for subsequent processing and behavioral action.


Assuntos
Córtex Visual , Vias Visuais , Vias Visuais/fisiologia , Córtex Visual/fisiologia , Campos Visuais , Neurônios/fisiologia , Estimulação Luminosa
2.
bioRxiv ; 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37502939

RESUMO

How neural representations preserve information about multiple stimuli is mysterious. Because tuning of individual neurons is coarse (for example, visual receptive field diameters can exceed perceptual resolution), the populations of neurons potentially responsive to each individual stimulus can overlap, raising the question of how information about each item might be segregated and preserved in the population. We recently reported evidence for a potential solution to this problem: when two stimuli were present, some neurons in the macaque visual cortical areas V1 and V4 exhibited fluctuating firing patterns, as if they responded to only one individual stimulus at a time. However, whether such an information encoding strategy is ubiquitous in the visual pathway and thus could constitute a general phenomenon remains unknown. Here we provide new evidence that such fluctuating activity is also evoked by multiple stimuli in visual areas responsible for processing visual motion (middle temporal visual area, MT), and faces (middle fundus and anterolateral face patches in inferotemporal cortex - areas MF and AL), thus extending the scope of circumstances in which fluctuating activity is observed. Furthermore, consistent with our previous results in the early visual area V1, MT exhibits fluctuations between the representations of two stimuli when these form distinguishable objects but not when they fuse into one perceived object, suggesting that fluctuating activity patterns may underlie visual object formation. Taken together, these findings point toward an updated model of how the brain preserves sensory information about multiple stimuli for subsequent processing and behavioral action. Impact Statement: We find neural fluctuations in multiple areas along the visual cortical hierarchy that could allow the brain to represent distinct co-occurring visual stimuli.

3.
Elife ; 112022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36444983

RESUMO

Sensory receptive fields are large enough that they can contain more than one perceptible stimulus. How, then, can the brain encode information about each of the stimuli that may be present at a given moment? We recently showed that when more than one stimulus is present, single neurons can fluctuate between coding one vs. the other(s) across some time period, suggesting a form of neural multiplexing of different stimuli (Caruso et al., 2018). Here, we investigate (a) whether such coding fluctuations occur in early visual cortical areas; (b) how coding fluctuations are coordinated across the neural population; and (c) how coordinated coding fluctuations depend on the parsing of stimuli into separate vs. fused objects. We found coding fluctuations do occur in macaque V1 but only when the two stimuli form separate objects. Such separate objects evoked a novel pattern of V1 spike count ('noise') correlations involving distinct distributions of positive and negative values. This bimodal correlation pattern was most pronounced among pairs of neurons showing the strongest evidence for coding fluctuations or multiplexing. Whether a given pair of neurons exhibited positive or negative correlations depended on whether the two neurons both responded better to the same object or had different object preferences. Distinct distributions of spike count correlations based on stimulus preferences were also seen in V4 for separate objects but not when two stimuli fused to form one object. These findings suggest multiple objects evoke different response dynamics than those evoked by single stimuli, lending support to the multiplexing hypothesis and suggesting a means by which information about multiple objects can be preserved despite the apparent coarseness of sensory coding.


Assuntos
Córtex Visual , Animais , Neurônios , Macaca , Encéfalo
4.
Ann Appl Stat ; 15(1): 41-63, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34413921

RESUMO

Conventional analysis of neuroscience data involves computing average neural activity over a group of trials and/or a period of time. This approach may be particularly problematic when assessing the response patterns of neurons to more than one simultaneously presented stimulus. in such cases the brain must represent each individual component of the stimuli bundle, but trial-and-time-pooled averaging methods are fundamentally unequipped to address the means by which multiitem representation occurs. We introduce and investigate a novel statistical analysis framework that relates the firing pattern of a single cell, exposed to a stimuli bundle, to the ensemble of its firing patterns under each constituent stimulus. Existing statistical tools focus on what may be called "first order stochasticity" in trial-to-trial variation in the form of unstructured noise around a fixed firing rate curve associated with a given stimulus. our analysis is based upon the theoretical premise that exposure to a stimuli bundle induces additional stochasticity in the cell's response pattern in the form of a stochastically varying recombination of its single stimulus firing rate curves. We discuss challenges to statistical estimation of such "second order stochasticity" and address them with a novel dynamic admixture point process (DAPP) model. DAPP is a hierarchical point process model that decomposes second order stochasticity into a Gaussian stochastic process and a random vector of interpretable features and facilitates borrowing of information on the latter across repeated trials through latent clustering. We illustrate the utility and accuracy of the DAPP analysis with synthetic data simulation studies. We present real-world evidence of second order stochastic variation with an analysis of monkey inferior colliculus recordings under auditory stimuli.

5.
Artigo em Inglês | MEDLINE | ID: mdl-34505116

RESUMO

We recently reported the existence of fluctuations in neural signals that may permit neurons to code multiple simultaneous stimuli sequentially across time [1]. This required deploying a novel statistical approach to permit investigation of neural activity at the scale of individual trials. Here we present tests using synthetic data to assess the sensitivity and specificity of this analysis. We fabricated datasets to match each of several potential response patterns derived from single-stimulus response distributions. In particular, we simulated dual stimulus trial spike counts that reflected fluctuating mixtures of the single stimulus spike counts, stable intermediate averages, single stimulus winner-take-all, or response distributions that were outside the range defined by the single stimulus responses (such as summation or suppression). We then assessed how well the analysis recovered the correct response pattern as a function of the number of simulated trials and the difference between the simulated responses to each "stimulus" alone. We found excellent recovery of the mixture, intermediate, and outside categories (>97% correct), and good recovery of the single/winner-take-all category (>90% correct) when the number of trials was >20 and the single-stimulus response rates were 50Hz and 20Hz respectively. Both larger numbers of trials and greater separation between the single stimulus firing rates improved categorization accuracy. These results provide a benchmark, and guidelines for data collection, for use of this method to investigate coding of multiple items at the individual-trial time scale.

6.
Nat Commun ; 9(1): 2715, 2018 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-30006598

RESUMO

How the brain preserves information about multiple simultaneous items is poorly understood. We report that single neurons can represent multiple stimuli by interleaving signals across time. We record single units in an auditory region, the inferior colliculus, while monkeys localize 1 or 2 simultaneous sounds. During dual-sound trials, we find that some neurons fluctuate between firing rates observed for each single sound, either on a whole-trial or on a sub-trial timescale. These fluctuations are correlated in pairs of neurons, can be predicted by the state of local field potentials prior to sound onset, and, in one monkey, can predict which sound will be reported first. We find corroborating evidence of fluctuating activity patterns in a separate dataset involving responses of inferotemporal cortex neurons to multiple visual stimuli. Alternation between activity patterns corresponding to each of multiple items may therefore be a general strategy to enhance the brain processing capacity, potentially linking such disparate phenomena as variable neural firing, neural oscillations, and limits in attentional/memory capacity.


Assuntos
Potenciais de Ação/fisiologia , Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Colículos Inferiores/fisiologia , Neurônios/fisiologia , Estimulação Acústica , Animais , Atenção/fisiologia , Córtex Auditivo/citologia , Eletrodos Implantados , Feminino , Colículos Inferiores/citologia , Macaca mulatta , Neurônios/citologia , Análise de Célula Única , Som , Técnicas Estereotáxicas
7.
Sci Rep ; 8(1): 116, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29311675

RESUMO

Baseball players must be able to see and react in an instant, yet it is hotly debated whether superior performance is associated with superior sensorimotor abilities. In this study, we compare sensorimotor abilities, measured through 8 psychomotor tasks comprising the Nike Sensory Station assessment battery, and game statistics in a sample of 252 professional baseball players to evaluate the links between sensorimotor skills and on-field performance. For this purpose, we develop a series of Bayesian hierarchical latent variable models enabling us to compare statistics across professional baseball leagues. Within this framework, we find that sensorimotor abilities are significant predictors of on-base percentage, walk rate and strikeout rate, accounting for age, position, and league. We find no such relationship for either slugging percentage or fielder-independent pitching. The pattern of results suggests performance contributions from both visual-sensory and visual-motor abilities and indicates that sensorimotor screenings may be useful for player scouting.


Assuntos
Desempenho Atlético , Beisebol , Desempenho Psicomotor , Adolescente , Adulto , Algoritmos , Humanos , Modelos Teóricos , Adulto Jovem
8.
J Sports Sci ; 36(2): 171-179, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28282749

RESUMO

This study aimed to evaluate the possibility that differences in sensorimotor abilities exist between hitters and pitchers in a large cohort of baseball players of varying levels of experience. Secondary data analysis was performed on 9 sensorimotor tasks comprising the Nike Sensory Station assessment battery. Bayesian hierarchical regression modelling was applied to test for differences between pitchers and hitters in data from 566 baseball players (112 high school, 85 college, 369 professional) collected at 20 testing centres. Explanatory variables including height, handedness, eye dominance, concussion history, and player position were modelled along with age curves using basis regression splines. Regression analyses revealed better performance for hitters relative to pitchers at the professional level in the visual clarity and depth perception tasks, but these differences did not exist at the high school or college levels. No significant differences were observed in the other 7 measures of sensorimotor capabilities included in the test battery, and no systematic biases were found between the testing centres. These findings, indicating that professional-level hitters have better visual acuity and depth perception than professional-level pitchers, affirm the notion that highly experienced athletes have differing perceptual skills. Findings are discussed in relation to deliberate practice theory.


Assuntos
Desempenho Atlético/fisiologia , Beisebol/fisiologia , Percepção de Profundidade/fisiologia , Acuidade Visual/fisiologia , Adolescente , Adulto , Fatores Etários , Teorema de Bayes , Humanos , Masculino , Destreza Motora/fisiologia , Córtex Sensório-Motor/fisiologia , Análise e Desempenho de Tarefas , Adulto Jovem
9.
Biometrika ; 100(1): 75-89, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23869109

RESUMO

Gaussian processes are widely used in nonparametric regression, classification and spatiotemporal modelling, facilitated in part by a rich literature on their theoretical properties. However, one of their practical limitations is expensive computation, typically on the order of n3 where n is the number of data points, in performing the necessary matrix inversions. For large datasets, storage and processing also lead to computational bottlenecks, and numerical stability of the estimates and predicted values degrades with increasing n. Various methods have been proposed to address these problems, including predictive processes in spatial data analysis and the subset-of-regressors technique in machine learning. The idea underlying these approaches is to use a subset of the data, but this raises questions concerning sensitivity to the choice of subset and limitations in estimating fine-scale structure in regions that are not well covered by the subset. Motivated by the literature on compressive sensing, we propose an alternative approach that involves linear projection of all the data points onto a lower-dimensional subspace. We demonstrate the superiority of this approach from a theoretical perspective and through simulated and real data examples.

10.
J Multivar Anal ; 116: 456-472, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25067858

RESUMO

A wide variety of priors have been proposed for nonparametric Bayesian estimation of conditional distributions, and there is a clear need for theorems providing conditions on the prior for large support, as well as posterior consistency. Estimation of an uncountable collection of conditional distributions across different regions of the predictor space is a challenging problem, which differs in some important ways from density and mean regression estimation problems. Defining various topologies on the space of conditional distributions, we provide sufficient conditions for posterior consistency focusing on a broad class of priors formulated as predictor-dependent mixtures of Gaussian kernels. This theory is illustrated by showing that the conditions are satisfied for a class of generalized stick-breaking process mixtures in which the stick-breaking lengths are monotone, differentiable functions of a continuous stochastic process. We also provide a set of sufficient conditions for the case where stick-breaking lengths are predictor independent, such as those arising from a fixed Dirichlet process prior.

11.
Biometrics ; 68(4): 1064-73, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23005895

RESUMO

In studies involving functional data, it is commonly of interest to model the impact of predictors on the distribution of the curves, allowing flexible effects on not only the mean curve but also the distribution about the mean. Characterizing the curve for each subject as a linear combination of a high-dimensional set of potential basis functions, we place a sparse latent factor regression model on the basis coefficients. We induce basis selection by choosing a shrinkage prior that allows many of the loadings to be close to zero. The number of latent factors is treated as unknown through a highly-efficient, adaptive-blocked Gibbs sampler. Predictors are included on the latent variables level, while allowing different predictors to impact different latent factors. This model induces a framework for functional response regression in which the distribution of the curves is allowed to change flexibly with predictors. The performance is assessed through simulation studies and the methods are applied to data on blood pressure trajectories during pregnancy.


Assuntos
Teorema de Bayes , Biometria/métodos , Interpretação Estatística de Dados , Métodos Epidemiológicos , Estudos Longitudinais , Modelos Estatísticos , Análise de Regressão , Algoritmos , Simulação por Computador
12.
Biostatistics ; 13(3): 427-39, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22085895

RESUMO

We propose a flexible and identifiable version of the 2-groups model, motivated by hierarchical Bayes considerations, that features an empirical null and a semiparametric mixture model for the nonnull cases. We use a computationally efficient predictive recursion (PR) marginal likelihood procedure to estimate the model parameters, even the nonparametric mixing distribution. This leads to a nonparametric empirical Bayes testing procedure, which we call PRtest, based on thresholding the estimated local false discovery rates. Simulations and real data examples demonstrate that, compared to existing approaches, PRtest's careful handling of the nonnull density can give a much better fit in the tails of the mixture distribution which, in turn, can lead to more realistic conclusions.


Assuntos
Teorema de Bayes , Interpretação Estatística de Dados , Funções Verossimilhança , Modelos Estatísticos , Algoritmos , Neoplasias da Mama/genética , Simulação por Computador , Feminino , Humanos , Leucemia/genética , Análise de Sequência com Séries de Oligonucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...